bisysle therapeutics

ABSTRACT

- BT8009 is a *Bicycle* Toxin Conjugate (*BTC*) in which a Nectin-4 binding *Bicycle*[®] (bicyclic peptide) is conjugated via an inert sarcosine spacer chain, and a cleavable linker, to the antimitotic toxin monomethyl auristatin E (MMAE).
- BT8009 has low nanomolar (3nM) affinity for Nectin-4 and high selectivity (>1000 fold) over other Nectins and Nectin-like family members.
- BT8009 is active in multiple Nectin-4 positive CDX and PDX models, leading to stable diseases and tumor regressions with durable responses.
- Efficacy data has now been extended to demonstrate efficacy of BT8009 in large (~1000mm³) xenograft tumors, with rapid and near complete responses observed.
- BT8009 shows excellent efficacy in xenograft models expressing Nectin-4 target and the pharmacokinetic profile enables a rapid attainment of high tumor exposure levels with reduced systemic exposure.

INTRODUCTION

adhesion molecule Nectin-4 is a cell important adherens junction in formation, with a restricted distribution in normal tissues, but over expressed in multiple types (e.g. bladder, tumor breast, gastric, lung, esophageal and pancreatic cancers (1-3)). As such it is a suitable target for directed delivery of a cytotoxic agent. A Nectin-4 ADC, Enfortumab vedotin, is in phase 3 trials for metastatic urothelial cancer.

The Bicycle phage display platform was used to identify a Nectin-4 binding parent *Bicycle* which was optimized for **Second Element Bicycle** which was optimized for **Second Element** affinity stability and hydrophilicity. Conjugation of this *Bicycle* peptide, through a cleavable linker, to MMAE results in the *BTC*, BT8009. BT8009 targets Nectin-4 and releases MMAE on cleavage by the enzymes upregulated in the tumor micro-environment, in order to kill adjacent tumor cells.

Why Bicycles?

BT8009, a Bicycle[®] Toxin Conjugate targeting Nectin-4, shows target selectivity, and efficacy in preclinical large and small tumor models.

METHODS

RESULTS

Parent Bicycle

Bicycle binders are identified using phage display technology. The Bicycle was synthesised by standard Fmoc solid phase synthesis and a proprietary cyclization step. Amino acid substitutions were made to optimise affinity, stability and The toxin-linker, valine-citrulline phydrophilicity. aminobenzyloxycarbonyl-MMAE (vc-PABC-MMAE), was conjugated to the *Bicycle* to generate BT8009.

Surface Plasmon Resonance (SPR) was used to confirm affinities for Nectin-4 and 2° targets. High content imaging and immunocytochemistry demonstrated BT8009 binding to cell surface of Nectin-4 expressing cells (MDA-MB-468).

Expression of Nectin-4 in tumor cells, or patient-derived tumor samples was evaluated by FACS. Where protein was not measured RNA expression was provided by the model supplier.

Efficacy was evaluated using a range of xenograft models in nude mice. Xenografts were established as subcutaneous cellor patient derived tumors. Dosing was normally initiated from an average tumor size of ~200mm^{3.} For some experiments tumors were allowed to grow to $\sim 1000 \text{ mm}^3$ before drug treatment commenced. Test agents (BTCs or vehicle) were administered by i.v. dosing as a bolus, unless stated otherwise.

nembrane marker remains bound to cells.

Figure 4: Efficacy tracks Nectin-4 expression determined by FACS. CDX models were selected for "null" and increasing expression of Nectin-4 by FACS. High expression models show excellent efficacy.

Figure 2. Identification and optimization of Nectin-4 binding Bicycle.

	hNectin sub type KD (nM)				hNecl KD (nM)				
	4	1	2	3	1	2	3	4	5
BT8009	3.02	No binding	No binding	No binding	No binding	No binding	No binding	Weak @ 5 uM	No binding

Table 1: BT8009 shows excellent specificity for hNectin-4 over the other Nectin/Nectin-like family members in SPR. Biotinylated Nectin-4 *Bicycle* (1 μ M) was assessed for binding to 5,528 human cell membrane proteins expressed in fixed HEK cells and only bound Nectin-4.

MMAE $(1\mu M)$

Figure 3: BT8009 binds Nectin-4 on MDA-MB-468 cells. Cells preincubated with BT8009, MMAE, non-binding BTC were washed and retained MMAE detected with anti-MMAE antibody. BT8009

Figure 5: Efficacy tracks Nectin-4 expression as determined by IHC. BT8009 was tested in 15 NSCLC PDX models at 3 mg/kg qw. Tumor growth inhibition correlates well with Nectin-4 expression, determined by IHC. An IHC assay for human tissue is being developed to support patient selection.

reducing systemic exposure.

tumors, with rapid tumor regression.

CONCLUSION/SUMMARY

Using phage display technology a Nectin-4 binding *Bicycle* was identified. The Parent *Bicycle* was optimized for affinity, stability and hydrophilicity. BT8009 was synthesized by conjugation through an inert spacer and a cleavable linker to the toxin MMAE. The binding peptide and the *BTC* are highly selective for the target protein. The pharmacokinetic profile of BT8009 enables a rapid attainment of high tumor levels of MMAE, with corresponding reduced systemic exposure. BT8009 shows excellent efficacy in large tumor CDX and PDX models expressing Nectin-4 target. IND enabling studies for BT8009 are ongoing.

REFERENCES

- 1. Challita-Eid et al. Caner Res 76:3003-13 (2016)
- 2. Fabre-Lafay et al. BMC Cancer 7:73-89 (2007)
- 3. M-Rabet et al. Ann Oncol 28:769-776 (2017)

ABSTRACT# C061

Figure 6: MMAE is retained in tumor but rapidly cleared from plasma, thereby